

Table 1. Effect of oral tobacco administration on hepatic esterases/amidases in rat

| Esterase/amidase         | Control     | Enzyme activity (units/mg protein) |                   |             |
|--------------------------|-------------|------------------------------------|-------------------|-------------|
|                          |             | 1 day                              | Treated<br>7 days | 25 days     |
| ASA esterase I           | 230 ± 11    | 205 ± 12                           | 305 ± 18*         | 351 ± 17*   |
| ASA esterase II          | 198 ± 9     | 179 ± 7                            | 245 ± 6*          | 270 ± 18*   |
| Procaine esterase        | 3.58 ± 0.12 | 4.02 ± 0.22                        | 3.25 ± 0.21       | 3.72 ± 0.11 |
| NPA esterase             | 7152 ± 221  | 8053 ± 526                         | 7632 ± 331        | 6857 ± 412  |
| Acetanilid N-deacetylase | 52.1 ± 1.8  | 58.3 ± 2.4                         | 104 ± 4*          | 126 ± 6.8*  |
| Butyrylcholine esterase  | 15.5 ± 1.2  | 14.8 ± 1.0                         | 13.2 ± 0.91       | 17.2 ± 0.8  |

Values are means ± S.E. with separate homogenates of liver obtained from 8–10 rats. One unit of esterase/amidase activity is expressed as the amount of enzyme causing disappearance or appearance of 0.1 nmole of substrate or product respectively under the experimental conditions described.

\* P < 0.01.

to alter the activities of esterases/amidases necessary for the metabolism of ASA, procaine, NPA, acetanilid and butyrylcholine in kidney and brain throughout the course of study. Similar findings have been reported previously, where phenobarbital [17, 18] and DDT [17] induced hepatic carboxylesterases/amidases but did not modify the enzyme activity of extrahepatic tissues. It seems that extrahepatic enzymes are probably non-inducible in nature.

Oral administration of nicotine (10 mg/kg, twice a day), equivalent to that present in 250 mg tobacco, did not elicit any change in the rate of hydrolytic metabolism of the xenobiotics by hepatic or extrahepatic esterases/amidases. It suggests that nicotine probably does not share the inductive effect of tobacco on hepatic esterases/amidases necessary for the metabolism of aspirin and acetanilid.

**Acknowledgements**—We wish to thank Prof. K. P. Bhargava for advice and encouragement. Grateful acknowledgement is made to the Indian Council of Medical Research for awarding a Research Associateship to S. Kaur.

Jawahar Lal Nehru Laboratory of  
Molecular Biology  
Department of Pharmacology and  
Therapeutics  
King George's Medical College  
Lucknow 226003  
India

BASHEER ALI\*  
SWARAJ KAUR

#### REFERENCES

1. B. N. La Du and H. Snady, in *Concepts in Biochemical Pharmacology*, Vol. 31, No. 22, pp. 3684–3687, 1982.

\* To whom correspondence should be addressed.

**Pharmacology, Handbook of Experimental Pharmacology** (Eds B. B. Brodie and J. R. Gillette), Vol. 2, p. 477. Springer, Berlin (1971).

2. M. Inoue, M. Morikawa, M. Tsuboi, Y. Ito and M. Sugiura, *Jap. J. Pharmac.* **30**, 529 (1980).
3. R. Mentlein, S. Heiland and E. Heymann, *Archs Biochem. Biophys.* **200**, 547 (1980).
4. M. Järvinen, R. S. S. Santti and V. K. Hopsu-Havu, *Biochem. Pharmac.* **20**, 2971 (1971).
5. E. H. Silver and S. D. Murphy, *Toxic. appl. Pharmac.* **57**, 208 (1981).
6. K. Krisch, in *The Enzymes* (Ed. P. D. Boyer), Vol. 5, p. 43. Academic Press, New York (1971).
7. T. Satoh and K. Moroi, *Jap. J. Pharmac.* **27**, 233 (1977).
8. B. Ali, S. Kaur, A. Kumar and K. P. Bhargava, *Biochem. Pharmac.* **29**, 3087 (1980).
9. S. Kaur and B. Ali, *Biochem. Pharmac.* **31**, 1595 (1982).
10. P. Trinder, *Biochem. J.* **57**, 301 (1954).
11. R. M. Lee and B. H. Livett, *Biochem. Pharmac.* **16**, 1757 (1967).
12. J. A. Goldbarg, O. M. Friedman, E. P. Pineda, E. E. Smith, R. Chatterji, E. H. Stein and A. M. Rutenberg, *Archs Biochem. Biophys.* **91**, 61 (1950).
13. O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall, *J. biol. Chem.* **193**, 265 (1951).
14. K. Moroi and T. Kuga, *Biochem. Pharmac.* **29**, 1491 (1980).
15. K. Moroi and T. Satoh, *Biochem. Pharmac.* **24**, 1517 (1975).
16. E. Brandt, E. Heymann and R. Mentlein, *Biochem. Pharmac.* **29**, 1927 (1980).
17. W. S. Schwark and D. J. Ecobichon, *Can. J. Physiol. Pharmac.* **46**, 207 (1968).
18. U. Nousiainen and O. Hänninen, *Acta Pharmac. Toxic.* **49**, 77 (1981).

#### Clonidine effect on hepatic cGMP levels *in vivo* could be mediated by $\alpha_1$ -adrenoceptors

(Received 12 February 1982; accepted 26 April 1982)

Clonidine has been used for some years as an  $\alpha_2$ -adrenergic agonist. Recent work from our laboratory has shown that, at low doses, clonidine administration produces a significant

decrease in cerebellar cGMP levels due to its action on  $\alpha_2$ -adrenoceptors [1].

In parallel with the study of clonidine action in the

cerebellum, we investigated the effect of clonidine on mouse hepatic cGMP levels. We studied its action in the liver for two main reasons. Firstly, clonidine has been demonstrated to cause hyperglycemia both in animals [2] and humans [3] and, secondly, because cGMP could be involved in the regulation of carbohydrate metabolism [4].

In order to characterize the action of clonidine in the liver, the effect of a number of adrenergic agonists and antagonists on hepatic cGMP levels was also investigated.

The results obtained in the present study indicate that unlike the action of clonidine in the cerebellum, in the liver clonidine increases cGMP levels via  $\alpha_1$ -adrenergic mechanisms.

#### Materials and methods

Male Swiss OF1 mice (22 g) were allowed free access to food and water. Drugs were freshly prepared and administered i.p. in a volume of 250  $\mu$ l. The following drugs were injected in saline: clonidine (Boehringer Ingelheim GmbH), piperoxan (Rhône Poulenc), phenoxybenzamine (Smith, Kline and French Lab.), phentolamine and guanethidine (Ciba-Geigy), amphetamine and phenylephrine (Sigma). Yohimbine (Boyer) was dissolved in 0.1 N HCl, adjusted to pH 5–6 with 0.1 N NaOH and made up to the required volume with saline. Prazosin (Pfizer GmbH) was dissolved in hot water. Control mice were injected with saline only.

The mice were killed by rapid microwave exposure (2 sec, Litton model 70-91, 2450 MHz). All animals were killed between 10:00 and 11:30 a.m.

All procedures for extraction and determination of cGMP were essentially as previously described in detail

[1]. In brief, after dissection, each liver was homogenized in 5 ml of 10% trichloroacetic acid (TCA). After centrifugation and filtration of supernatants, aliquots of 750  $\mu$ l were extracted with 2  $\times$  7.5 ml of water-saturated diethyl ether. Dry residues were taken up in 350  $\mu$ l of 0.2 N Tris buffer, pH 7.5, containing 10 mM EDTA. If necessary, the pH of the solutions were adjusted to 7.5 with 0.1 N NaOH and 100- $\mu$ l aliquots were used for cGMP determinations.

Protein was determined on the TCA pellets after solubilization in 1 N NaOH [5].

All results represent the mean of at least 10 experiments  $\pm$  S.E.M. The significance of differences was determined by Student's "t"-test;  $P < 0.05$  was considered as the limit of statistically significant differences.

#### Results

*Action of  $\alpha$ -adrenergic agonists.* Both clonidine and phenylephrine increased liver cGMP concentrations. This rise was dose-dependent for agonists concentrations up to 2 mg/kg and remained practically constant for higher concentrations (Fig. 1). The maximal increase (+ 129%) occurred 10 min after injection in the case of clonidine, but only after 30 min for phenylephrine (+ 128%, Fig. 2). Methoxamine also increased hepatic cGMP levels (+ 49%, Table 1).

When clonidine (3 mg/kg) was injected 20 min after phenylephrine (5 mg/kg), we observed a significant increase (+ 98%) in cGMP levels. This increase was of the same magnitude as that obtained when clonidine or phenylephrine were injected separately (Table 1). There is no additive effect of these two drugs.

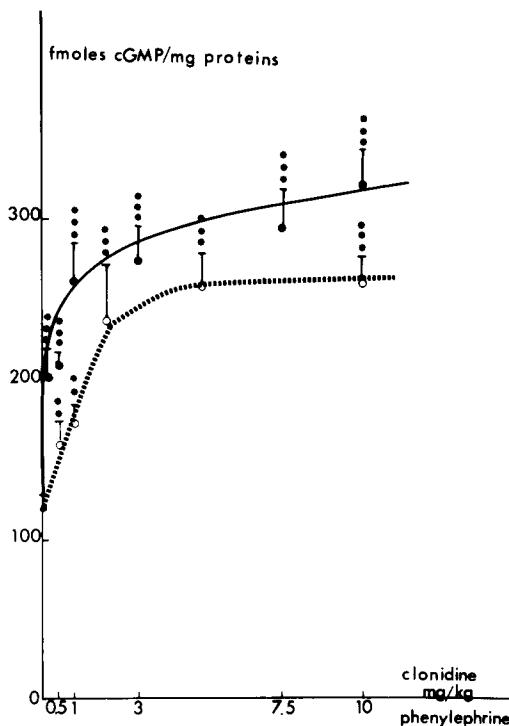



Fig. 1. Effect of clonidine and phenylephrine on mouse hepatic cGMP levels. Each point represents the mean  $\pm$  S.E.M. for groups of at least five animals: dose-response curve for clonidine (●—●) and for phenylephrine (○—○). Ordinate: fmoles cGMP/mg protein; abscissa: quantity of clonidine or phenylephrine injected i.p. (mg/kg). \*\* $P < 0.01$ , \*\*\* $P < 0.001$ —relative to control values.

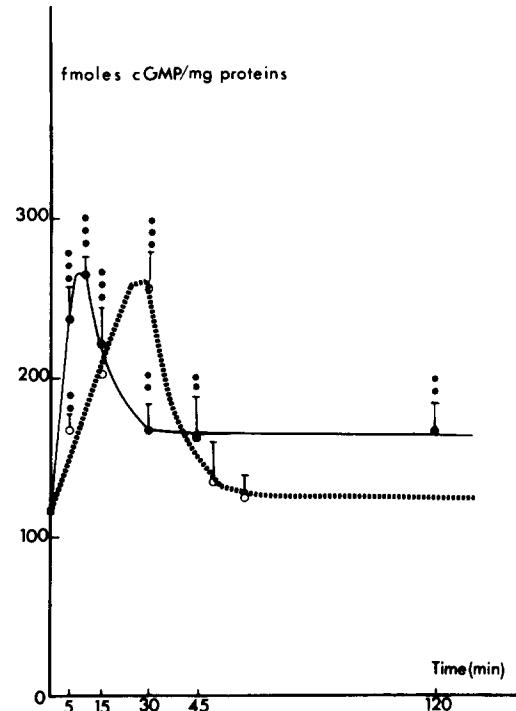



Fig. 2. Variation in mouse liver cGMP levels with time after a single dose of clonidine (3 mg/kg) (●—●) or of phenylephrine (5 mg/kg) (○—○). Each point represents the mean  $\pm$  S.E.M. for groups of at least six animals. Ordinate: fmoles/mg protein; abscissa: time (min). \*\* $P < 0.01$ , \*\*\* $P < 0.001$ —relative to control values.

Table 1. Action of clonidine and adrenergic agonists and antagonists on mouse hepatic cGMP content

|                                    | Cyclic GMP<br>(fmoles/mg protein) |
|------------------------------------|-----------------------------------|
| Controls                           | 113.30 ± 2.73                     |
| Clonidine (3 mg/kg:10 min)         | 259.98 ± 7.32*                    |
| Piperoxane (7 mg/kg:30 min)        | 113.83 ± 4.60 (n.s.)              |
| Piperoxane + clonidine             | 237.23 ± 11.35*                   |
| Yohimbine (7 mg/kg:30 min)         | 116.39 ± 9.66 (n.s.)              |
| Yohimbine + clonidine              | 226.47 ± 7.92*                    |
| Phenoxybenzamine (10 mg/kg:30 min) | 115.95 ± 8.45 (n.s.)              |
| Phenoxybenzamine + clonidine       | 182.81 ± 9.15†                    |
| Phentolamine (5 mg/kg:30 min)      | 95.09 ± 5.90 (n.s.)               |
| Phentolamine + clonidine           | 267.99 ± 7.53*                    |
| Prazosin (5 mg/kg:30 min)          | 98.45 ± 9.42 (n.s.)               |
| Prazosin + clonidine               | 144.94 ± 8.10 (n.s.)‡             |
| Phenylephrine (5 mg/kg:30 min)     | 258.65 ± 11.00*                   |
| Phenylephrine + clonidine          | 224.85 ± 7.60*                    |
| Methoxamine (5 mg/kg:30 min)       | 169.03 ± 5.71*                    |
| Guanethidine (5 mg/kg:30 min)      | 137.72 ± 8.40 (n.s.)              |
| Guanethidine + clonidine           | 259.48 ± 28.68*                   |

Mice were killed by microwave irradiation at the appropriate time after injection. The numbers in parentheses represent the dose of drug and time of injection. For all compounds, a dose-response curve and a time course were carried out. The dose and time noted here correspond to the maximal effect observed if any. When two compounds were injected, clonidine was administered 20 min after the first drug and mice were killed 10 min later. Values are the average of at least 10 determinations ± S.E.M.

\* P < 0.001 relative to control values.

† P < 0.01 relative to control values.

‡ P < 0.0001 relative to the clonidine-treated animals' values.

n.s. = not significant.

**Action of  $\alpha$ -adrenergic antagonists.** The  $\alpha$ -adrenergic antagonists, phenoxybenzamine, phentolamine, piperoxane, yohimbine and prazosin had no significant effect on hepatic cGMP content under our experimental conditions for all concentrations tested and at any time (Table 1).

The  $\alpha_2$ -selective antagonists, piperoxane and yohimbine, and the non-selective  $\alpha_1$ -adrenergic antagonist, phentolamine, did not inhibit the clonidine-induced increase in cGMP levels. On the other hand, the clonidine effect was completely blocked by prior injection of the  $\alpha_1$ -selective antagonist, prazosin (Table 1), since the level of cGMP observed after injection of both compounds together was not significantly different from that of controls. Similarly, phenoxybenzamine partially antagonized clonidine action, since the increase in cGMP content (+ 61%) when phenoxybenzamine and clonidine were administered together was significantly less evident than the increase observed with clonidine alone (+ 129%).

**Action of guanethidine.** Guanethidine did not exhibit any effect on hepatic cGMP concentrations when injected alone, and did not inhibit the clonidine action (Table 1).

## Discussion

In recent years, clonidine has been shown to act on both  $\alpha_1$ - and  $\alpha_2$ -adrenoreceptors, irrespective of their anatomical (pre- or postsynaptic) localization [6-8]. The present experiments indicate that the effects of clonidine on hepatic cGMP are due to activation of  $\alpha_1$ -adrenoreceptors. Firstly, phenylephrine, a preferential  $\alpha_1$ -agonist, has the same effect as clonidine (differences in the time courses of phenylephrine and clonidine could reflect differences in the relative hydrosolubility and liposolubility of the two compounds). Secondly, phenoxybenzamine and prazosin, preferential  $\alpha_1$ -antagonists, reduced or abolished the effects of clonidine, whereas piperoxane and yohimbine, preferential

$\alpha_2$ -antagonists, caused no significant inhibition of clonidine action.

Since pretreatment with guanethidine did not alter the effect of clonidine on hepatic cGMP, an indirectly mediated effect or an effect depending on the sympathetic system (such as a central action) must be ruled out. In addition, phenylephrine, which does not easily cross the blood-brain barrier, was also effective in increasing the hepatic cGMP content; therefore the comparable action of clonidine must be peripheral.

In the cerebellum, clonidine, in a dose range from 0.1 to 10 mg/kg, was shown to act on  $\alpha_2$ -adrenoreceptors and produced an important decrease in cGMP content [1-9]. In contrast,  $\alpha_1$ -adrenergic agonists, such as phenylephrine, caused an increase in the concentration of cerebellar cGMP [1].

As observed by Pointer *et al.* [10], in isolated hepatocytes, we failed to provoke a decrease in cGMP levels with any of the tested compounds in the present study.

These results are in agreement with the report of Wood *et al.* [11] that in rat liver plasma membranes,  $\alpha$ -adrenergic receptors are predominantly of the  $\alpha_1$ -subtype. In order to confirm them and to avoid all indirect effects due to the complexity of our *in vivo* system, we are going to study this effect of clonidine on liver cGMP content *in vitro* with isolated hepatocytes.

All these observations are consistent with the hypothesis that clonidine action on hepatic cGMP content is associated with stimulation of  $\alpha_1$ -receptors present in liver membranes. More studies are necessary to show if other  $\alpha_1$ -agonists such as cirazoline or  $\alpha_2$ -agonists like azepexole can or can not induce the same response and to establish a clear correlation between cGMP and carbohydrate metabolism in this organ. Moreover it would be interesting to know if this increase is, like Exton proposed [12], secondary to a rise in intracellular  $\text{Ca}^{2+}$ . These studies are presently under investigation in our laboratory.

**Acknowledgements**—The authors would like to thank Professor H. Schmitt for helpful discussions and Dr. M. Goodhardt for reviewing the manuscript.

Service de Biochimie  
CHU Henri-Mondor  
94010 Creteil Cedex  
France

CLAIREE LACOMBE  
JEAN-PAUL LAUTIE  
MADONA HAIDAMOUS  
JEAN-CLAUDE KOUYOUMDJIAN  
LILIANE GRIGNON

## REFERENCES

1. M. Haidamous, J.-C. Kouyoumdjian, P. A. Briley and P. Gonnard, *Eur. J. Pharmac.* **63**, 287 (1980).
2. D. Rehbinder and W. Deckers, *Arch Pharmac. exp. Path.* **261**, 162 (1968).

3. S. A. Metz, J. B. Halter and R. P. Robertson, *Diabetes* **27**, 554 (1978).
4. J. T. Spence, M. J. Merrill and H. C. Pitot, *J. biol. Chem.* **256**, 1598 (1981).
5. O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall, *J. biol. Chem.* **193**, 265 (1951).
6. S. Z. Langer, *Biochem. Pharmac.* **23**, 1793 (1974).
7. D. C. U'Prichard and S. H. Snyder, *Life Sci.* **24**, 79 (1979).
8. J. R. Docherty and J. C. McGrath, *Br. J. Pharmac.* **68**, 225 (1980).
9. S. W. Gumulka, V. Dinnendahl, D. Bartmus, P. S. Schönhöfer and K. Stock, *Naunyn-Schmiedeberg's Archs Pharmac.* **298**, 7 (1977).
10. R. H. Pointer, F. R. Butcher and J. N. Fain, *J. biol. Chem.* **251**, 2987 (1976).
11. C. L. Wood, C. D. Arnett, W. R. Clarke, B. S. Tsai and R. J. Lefkowitz, *Biochem. Pharmac.* **28**, 1277 (1979).
12. J. H. Exton, *Am. J. Physiol.* **282**, 788 (1980).

*Biochemical Pharmacology*, Vol. 31, No. 22, pp. 3687-3689, 1982.  
Printed in Great Britain.

0006-2952/82/223687-03 \$03.00/0  
© 1982 Pergamon Press Ltd.

Evidence for binding of certain acidic drugs to  $\alpha_1$ -acid glycoprotein

Human serum albumin (HSA) and  $\alpha_1$ -acid glycoprotein ( $\alpha_1$ -AGP) are the major circulating plasma proteins involved in drug binding. Acidic (anionic) drugs ionized at plasma pH, are assumed to be bound preferentially to HSA in plasma. The binding forces involve both hydrophobic and electrostatic interactions [1]. In contrast,  $\alpha_1$ -AGP is the main plasma protein for the binding of basic (cationic) drugs [2]. In this case, the nature of the binding forces is not clearly established, though recent studies show that electrostatic interactions seem to be poorly involved: Lemaire and Tillement [3] showed that the different hydrophobic characteristics of some pindolol derivatives led to important differences in their binding. Then hydrophobic interactions between  $\alpha_1$ -AGP and drugs are strongly to be expected. If this hypothesis is true, anionic drugs may also interact with  $\alpha_1$ -AGP by hydrophobic bonds. So, the aim of this study is to investigate the qualitative and quantitative aspects of plasma binding of anionic drugs regarding their possible interactions with  $\alpha_1$ -AGP. Two types of anionic drugs were used depending on the presence or absence of a carboxylic group. We attempted to find out whether acidic and basic drugs are bound to distinct or common sites on  $\alpha_1$ -AGP.

**Materials and methods.** The binding of the drugs was measured by equilibrium dialysis at pH 7.4 in 0.066 M phosphate buffer ( $\mu = 0.284$ ) at 37° for 4 hr using a Dianorm apparatus according to an experimental scheme previously described [4]. Drug solutions were prepared by isotopic dilution of a constant amount of [<sup>14</sup>C]warfarin (49 Ci/mole, Amersham), [<sup>14</sup>C]acenocoumarol (7 Ci/mole, Ciba-Geigy), [<sup>14</sup>C]phenylbutazone (28 Ci/mole, Ciba-Geigy), [<sup>14</sup>C]benoxaprofen (2.5 Ci/mole, Eli-Lilly), [<sup>14</sup>C]indomethacin (13.8 Ci/mole, Merck Sharp & Dohme), [<sup>14</sup>C]clitanoxone (1.8 Ci/mole, Pierre Fabre), [<sup>14</sup>C]salicylic acid (47 Ci/mole, Amersham), [<sup>14</sup>C]clofibric acid (20 Ci/mole, CEA), [<sup>14</sup>C]fenofibric acid (5.8 Ci/mole, Fournier) and [<sup>14</sup>C]valproic acid (0.5 Ci/mole, CEA) with increasing amounts of unlabelled drugs. All labelled drugs had a chemical purity greater than 99%.  $\alpha_1$ -AGP (Behringwerke)

(99% pure) was dissolved in phosphate buffer at a concentration of 22.5  $\mu$ M. Estimation of the binding parameters was performed by fitting the data to a theoretical relationship for drug-protein binding derived from the mass action law:

$$\frac{B}{R} = \frac{nKF}{1 + KF} \quad (1)$$

where  $B$  and  $F$  are the bound- and free-drug concentrations respectively,  $n$  and  $K$  the number of binding sites and the association constant, and  $R$  the total protein concentration. The data were analyzed by an iterative non-linear regression program using a Gauss-Newton algorithm [4]. Data obtained with an inhibitor were treated as follows: bound ( $B$ ) vs free ( $F$ ) ligand plots obtained without and with different amounts of inhibitor were analyzed altogether assuming either  $n$  or  $K$  values depended on the inhibitor concentration. The correct model was then chosen according to the best fit.

Some theoretical calculations were made to evaluate the respective concentrations of drug bound to HSA and  $\alpha_1$ -AGP in plasma using therapeutic plasma levels. So the general equation used was:

$$B_i = K_i n_i R F \quad (2)$$

applied to each drug-protein binding of the  $i$ th class. Then

Table 1. Binding characteristics of some anionic drug- $\alpha_1$ -AGP interactions

| Drug           | % bound* | $n$             | $K$<br>( $10^{-3} M^{-1}$ ) |
|----------------|----------|-----------------|-----------------------------|
| Warfarin       | 88       | $1.09 \pm 0.03$ | $212 \pm 38$                |
| Acenocoumarol  | 85       | $1.08 \pm 0.02$ | $201 \pm 35$                |
| Phenylbutazone | 26       | $0.71 \pm 0.08$ | $35 \pm 9$                  |

\*At a drug to  $\alpha_1$ -AGP molar ratio of 0.04.